Big Trajectory Data Analysis for Clustering and Anomaly Detection
نویسندگان
چکیده
We’ve been developing a sensor that can acquire positional data. Recently, a position-based big data creation is easy task and trajectory analysis is the highest priority for ”position-based service”. Traffic congestion, marketing mining, and pattern analysis are the one of the examples in trajectory analysis field. In this paper, we propose the trajectory analysis approach for clustering and anomaly detection by using big trajectory data. To execute clustering, we understand an environment in front of the camera and set a cluster route from trajectory map. The experiment shows that the proposed method understands environment and performs clustering. Moreover, the approach classifies anomalies from big data.
منابع مشابه
Trajectory Shape Analysis and Anomaly Detection Utilizing Information Theory Tools
In this paper, we propose to improve trajectory shape analysis by explicitly considering the speed attribute of trajectory data, and to successfully achieve anomaly detection. The shape of object motion trajectory is modeled using Kernel Density Estimation (KDE), making use of both the angle attribute of the trajectory and the speed of the moving object. An unsupervised clustering algorithm, ba...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملBehavior-Based Online Anomaly Detection for a Nationwide Short Message Service
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...
متن کاملAnomaly Detection in Distributed Dataflow Systems
Anomaly Detection in Distributed Dataflow Systems by Xuan Truong NGUYEN Anomalies (also known as outliers) are unexpected and abnormal patterns in data. They are often very different from normal data. Anomaly detection or outlier detection is an important data mining task because of its applications in diverse fields. Over the past decades, a number of outlier detection algorithms have been pro...
متن کاملA New Dissimilarity Measure for Trajectories with Applications in Anomaly Detection
Trajectory clustering has been used to very effectively in the detection of anomalous behavior in video sequences. A key point in trajectory clustering is how to measure the (dis)similarity between two trajectories. This paper deals with a new dissimilarity measure for trajectory clustering, giving the same importance to differences and similarities between the trajectories. Experimental result...
متن کامل